

MICRO-428: METROLOGY

Edoardo Charbon, Claudio Bruschini, and Georg Fantner

Institute of Electrical and Micro Engineering (IEM), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

TAs: Samuele Bisi, Prabhleen Singh

MICRO-428: METROLOGY

WEEK THREE: OPTICAL IMAGE SENSORS

Edoardo Charbon

Advanced Quantum Architectures Laboratory (AQUA)

EPFL at Microcity, Neuchâtel, Switzerland

EPFL

Reference Books

- A. Theuwissen, "Solid-State Imaging with CCDs", SSS&T Library, 1995
- P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, "Analysis and Design of Analog Integrated Circuits (4th ed.)", Wiley, 2001
- P. E. Allen, D. R. Holberg, "CMOS Analog Circuit Design (2nd ed.)", Oxford University Press, 2002

Outline

3.1 Abbe's Limit and sub-resolution pixels – Review of Sampling Theory

3.2 Microlenses and vignetting

3.3 Single-photon detectors and their metrology

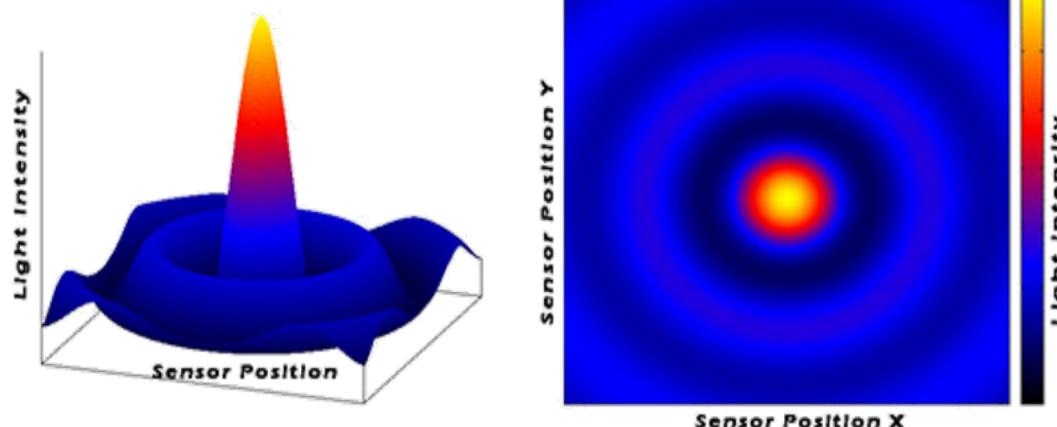
3.1.1 Abbe's Limit

- The Rayleigh criterion says that the minimum spatial resolution behind a lens is the radius of the Airy disk

$$r_a = 1.22\lambda F\#$$

where λ is the wavelength of light and $F\#$ is the F-number of the lens, defined as f/D , where f is the focal length and D the diameter of the entrance pupil.

- Image of the Airy rings projected onto a screen:



3.1.2 Sub-resolution Pixels – The Gigavision Approach

- In conventional pixels, the number of photons detected is proportional to the number of accumulated charges, and thus the voltage across a capacitance
- If the pixel is sub-divided in smaller (ideally infinitesimal) cells, each detecting a single photon, then the pixel would look like this:

3.1.2 Sub-resolution Pixels – The Gigavision Approach

- Thus, photosensitive cells smaller than r_a will capture a uniform light and will show no additional details of the scene!
- However, we can imagine them as receiving a low-pass filtered image where r_a is the equivalent of the Nyquist bandwidth (but in space-, not in time-domain) and the cells are operating a sort of oversampling, the OSR being defined as

$$OSR = \frac{X \cdot Y}{x \cdot y},$$

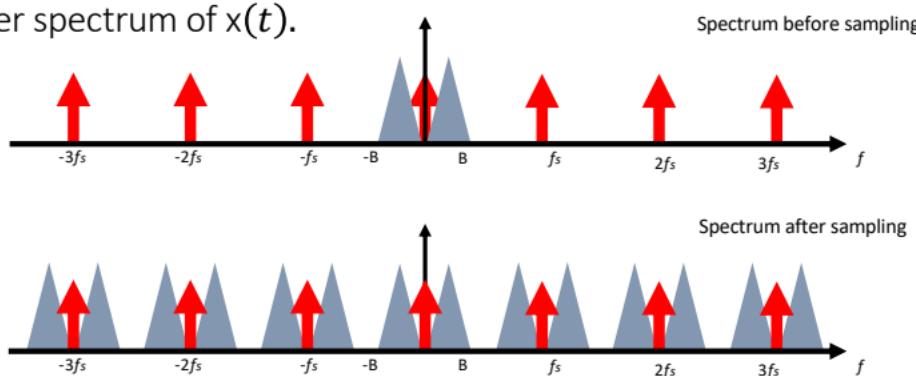
where x, y and X, Y are the pitch of the cells and of the pixel.

3.1.2 Nyquist-Shannon sampling theorem

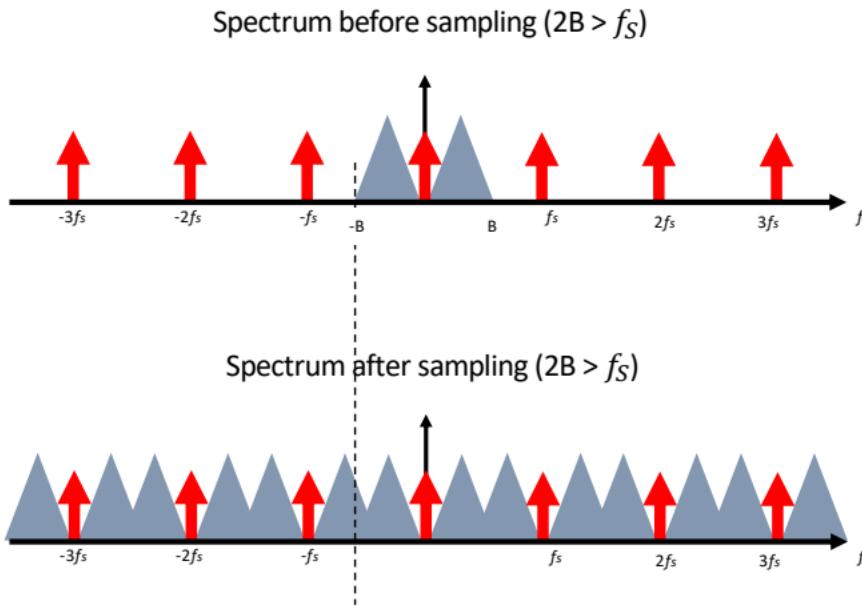
- Given a band-limited continuous function $x(t)$, sampled with a rate (sampling rate) $f_S = 1/T_S$, into a function x_S
- $$x_S(t) = \sum_{k=-\infty}^{+\infty} x(t - kT_S).$$
- $x(t)$ can be reconstructed with perfect fidelity iff $f_S > 2B$, where B is the bandwidth of $x(t)$. The resulting Fourier spectrum $X_S(\omega)$ is

$$X_S(\omega) = \sum_{k=-\infty}^{+\infty} X(\omega - kf_S),$$

where $X(\omega)$ is the Fourier spectrum of $x(t)$.

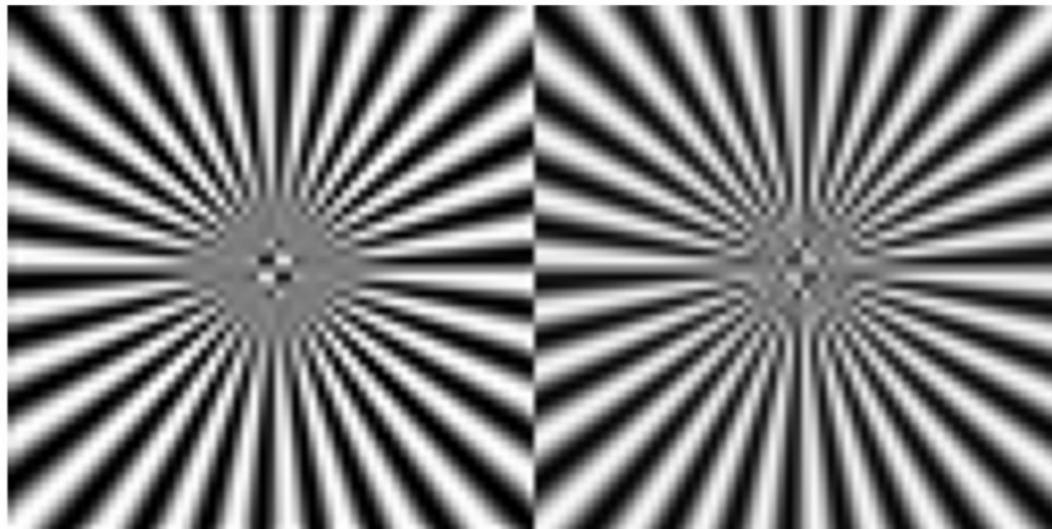


3.1.2 Nyquist-Shannon sampling theorem => Aliasing



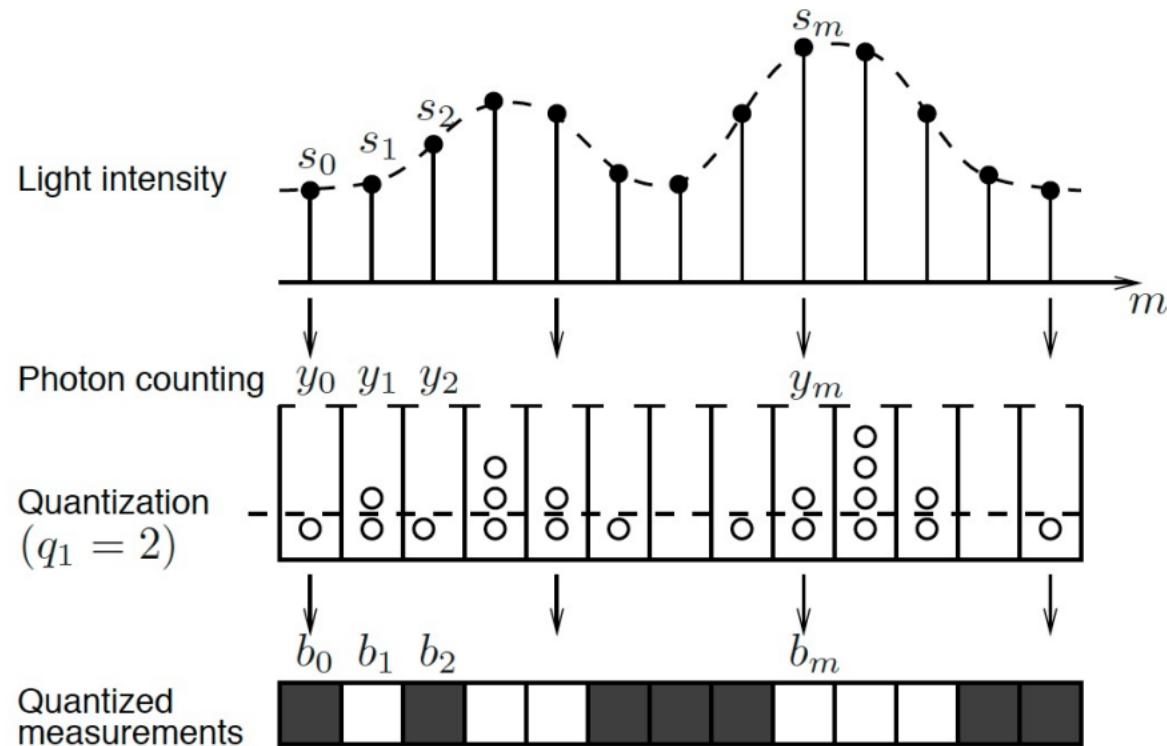
3.1.2 Nyquist-Shannon sampling theorem in space

- The same is true when we sample in space, where sampling in x-, y-direction results in aliasing if the x- and y-spatial spectrum have a bandwidth that is higher than the sampling distance (or, in our case, the pitch of the pixels)
- Examples of aliasing in cameras



Source: Bart Wronski

3.1.2 Sub-resolution Pixels – The Gigavision Approach

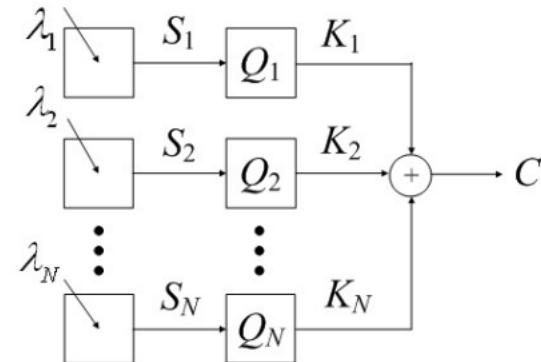


3.1.2 Sub-resolution Pixels – The Gigavision Approach

Conventional Pixels:



Gigavision Pixels:

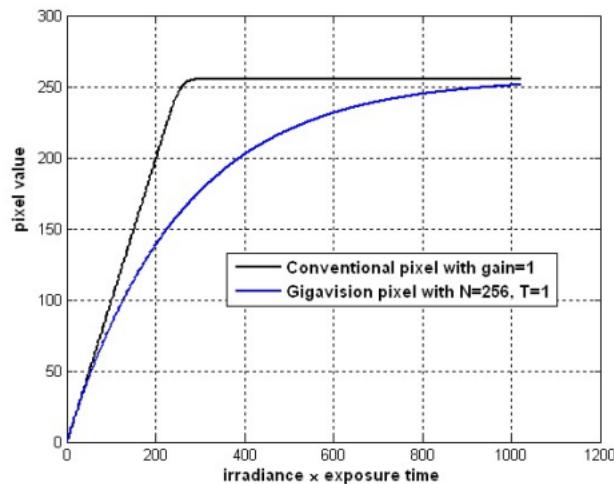
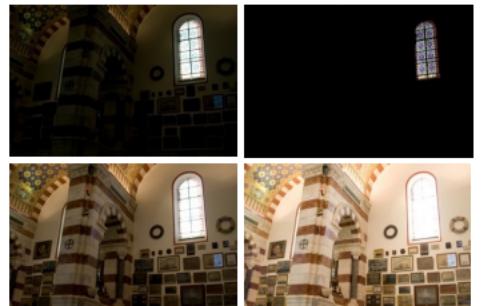


$$p_\lambda = \mathbb{P}[S_i \geq T] = \sum_{k=T}^{\infty} e^{(-\lambda/N)} \frac{(\lambda/N)^k}{k!}.$$

$$\lambda = -N \log \left(1 - \frac{\mathbb{E}[C]}{N} \right)$$

3.1.2 Sub-resolution Pixels – The Gigavision Approach

- Logarithmic response given by statistics, thus no PVT variability are present!



Conventional Cameras: multiple exposures

Gigavision Camera: single exposure

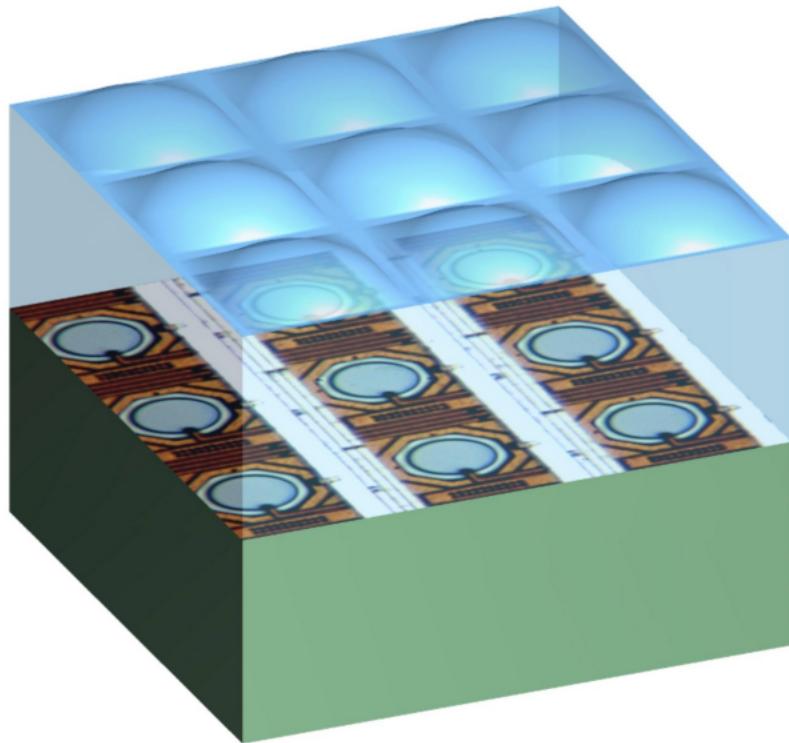
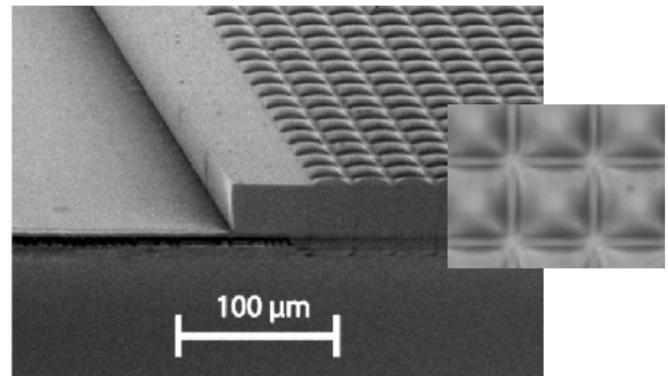
3.1.2 Sub-resolution Pixels – Color Example

original image

1 binary image, oversampling factor 8 by 8

255 binary images,
oversampling factor 8 by 8

3.2.1 Microlenses



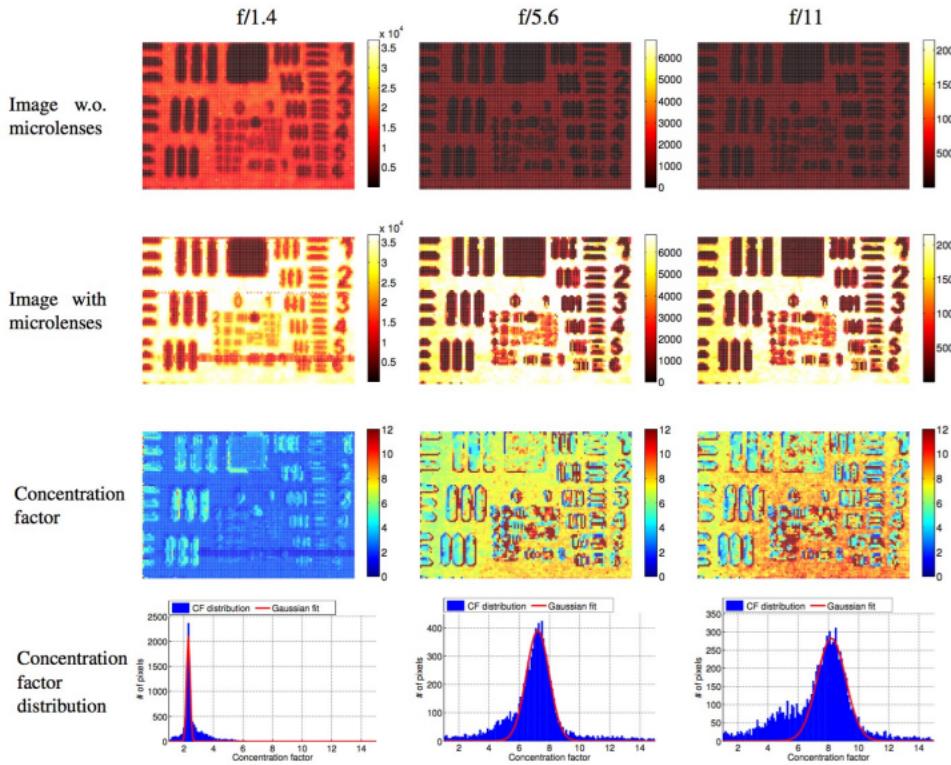
J. Mata Pavia et al., Optics Express 2014

3.2.1 Microlens Metrology – Practical characterization

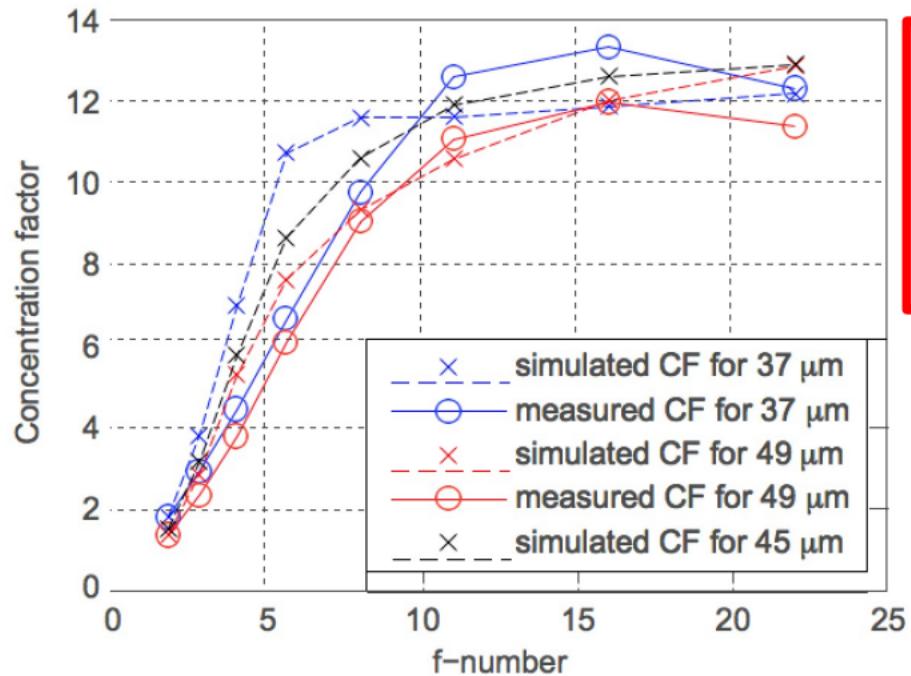
- Goal: Concentration factor (CF) characterization
- CF definition:

$$CF = \frac{\text{Photon count with microlens}}{\text{Photon count without microlens}}$$

- Use different f-numbers
- Normalize for infinite or 1
- At an f-number of 1, the concentration factor will approach 1
- Perform relative measurement



3.2.1 Microlens Metrology – Concentration Factor vs. f-number

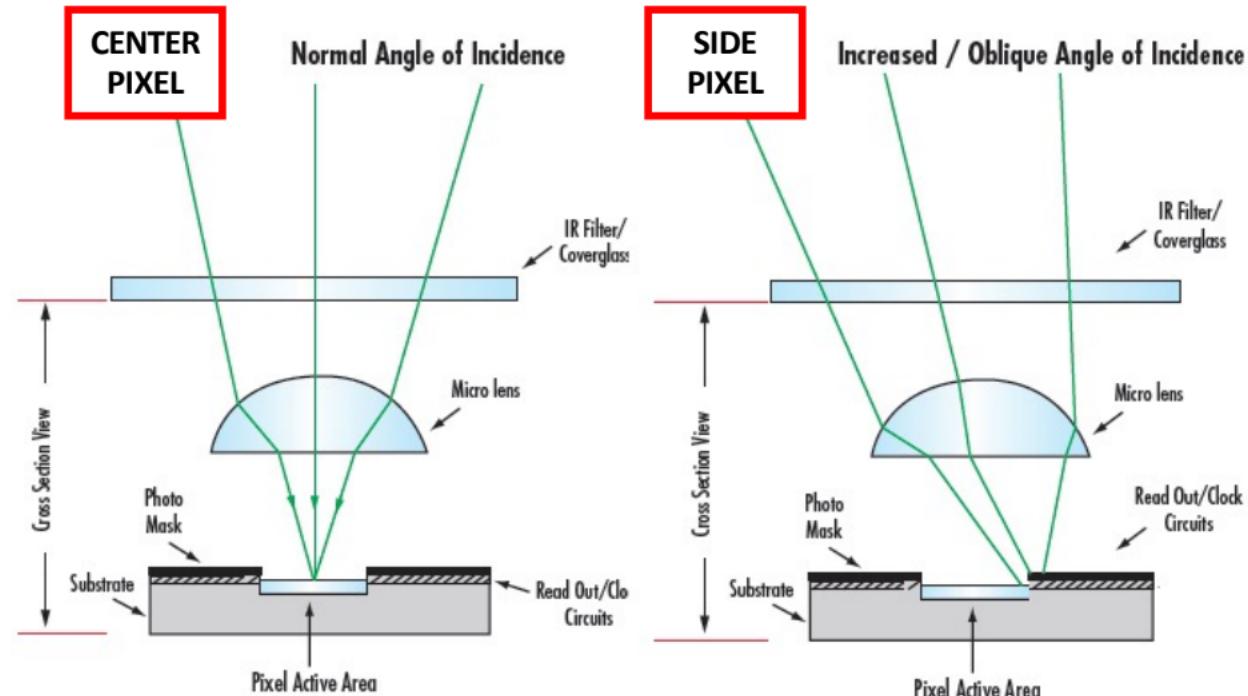


$$\text{F-number} = f/D$$

D = aperture (diameter of entrance pupil)
 f = focal length

J. Mata Pavia et al., Optics Express 2014

3.2.2 Vignetting

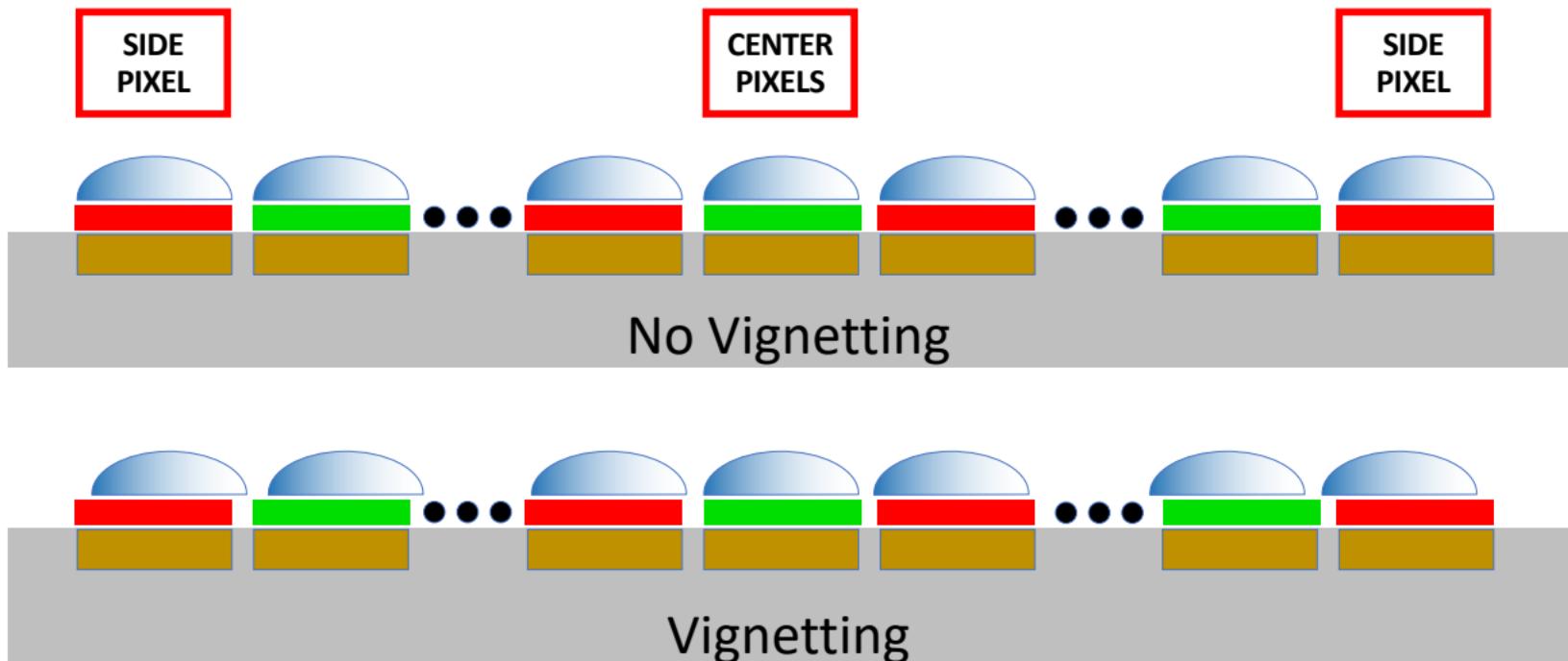


Source: Edmund Optics Ltd.

3.2.2 Vignetting – Example

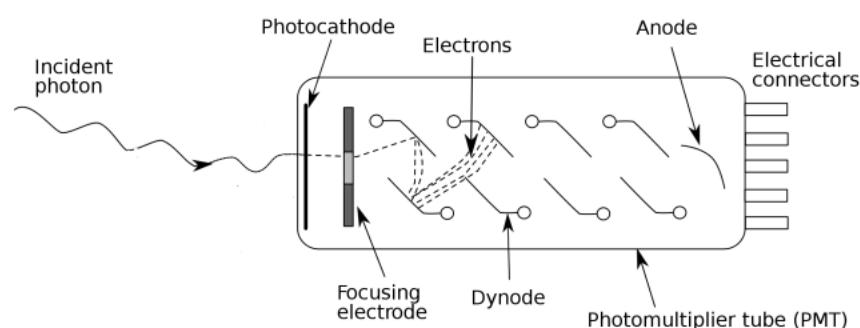
Source: Wikipedia.

3.2.2 Vignetting – Solution



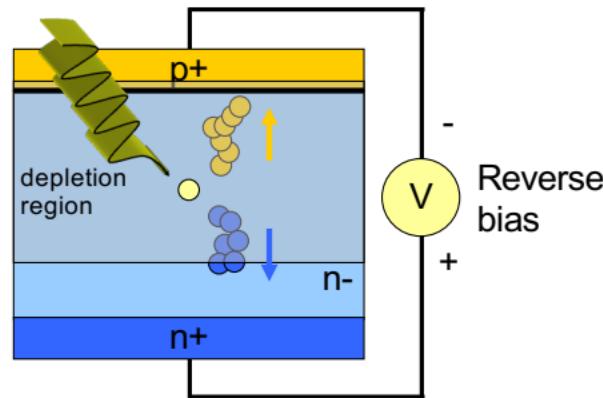
3.3.1 Single-photon Detectors

- Electron multiplication in vacuum
 - Photomultiplier tube (PMT)
 - Microchannel plate (MCP)
- Electron multiplied charge-coupled device (EMCCD)
- Avalanche photodiode (APD)
- Geiger-mode APD (GAPD) or Single-photon avalanche diode (SPAD)
- Silicon photomultiplier (SiPM)

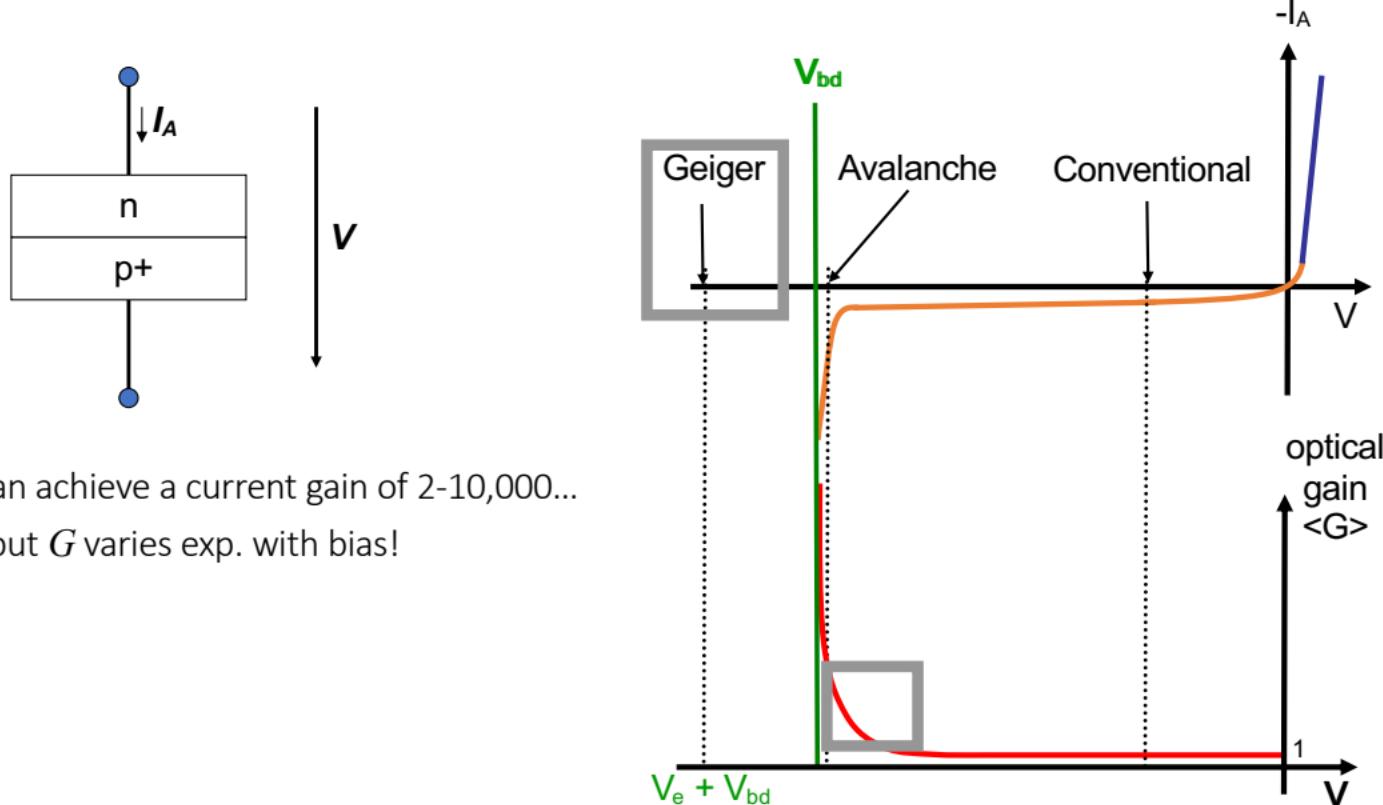


3.3.1 Single-photon Detectors – CMOS SPDs

- Suppose one can perform impact ionization in a solid, thereby achieving very large gain in an area of a few tens of μm^2 (thus at pixel level)
- This can be achieved in an abrupt one-sided junction

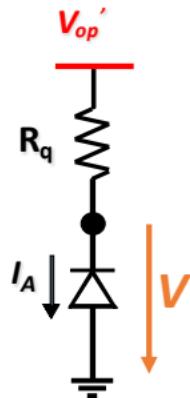


3.3.1 Single-photon Detectors – Single-photon Avalanche Diode (SPAD)

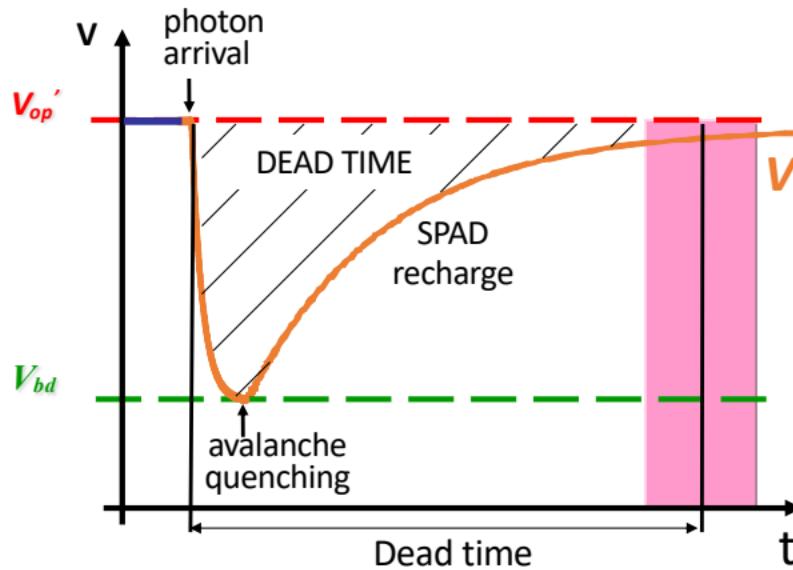


3.3.1 Single-photon Detectors – Single-photon Avalanche Diode (SPAD)

Passive quenching:

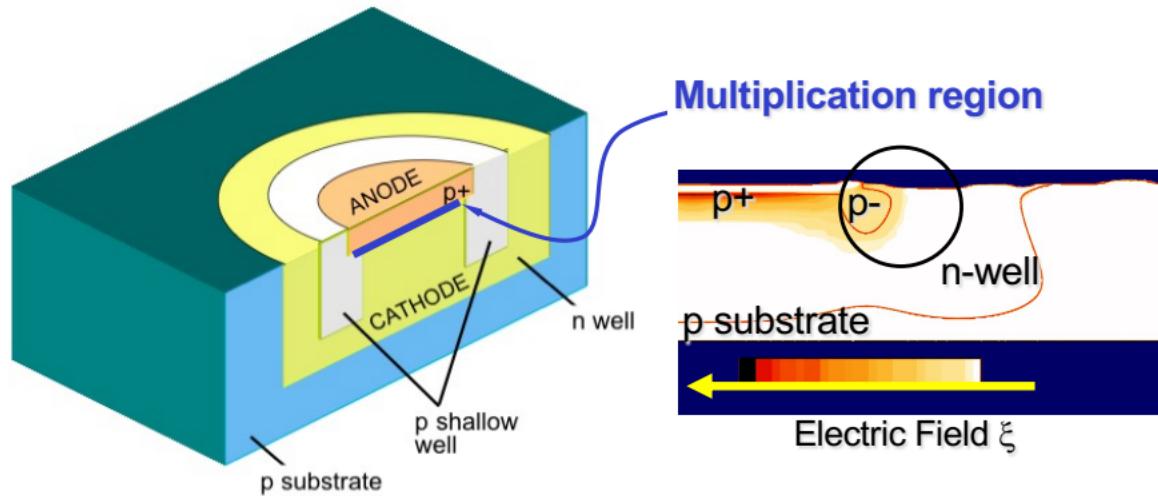


Operation cycle:



3.3.1 Single-photon Detectors – Single-photon Avalanche Diode (SPAD)

- Implemented entirely using standard layers and conventional process steps!



3.3.2 SPAD Metrology

- *Dead time*
- Dark counts
- Photon detection probability (PDP)
- Timing resolution
- *Afterpulsing*

... and in SPAD matrices

- Crosstalk
- PDP Uniformity
- DCR Uniformity

3.3.2 SPAD Metrology – Dark Counts

- Measure dark count rate (DCR)

Count events in fixed time Δt

tradeoff btw. timing resolution and DCR error

Counter resolution

Averaging

Area of detector proportional to DCR

- Due to statistical behavior use:

Mean

Median

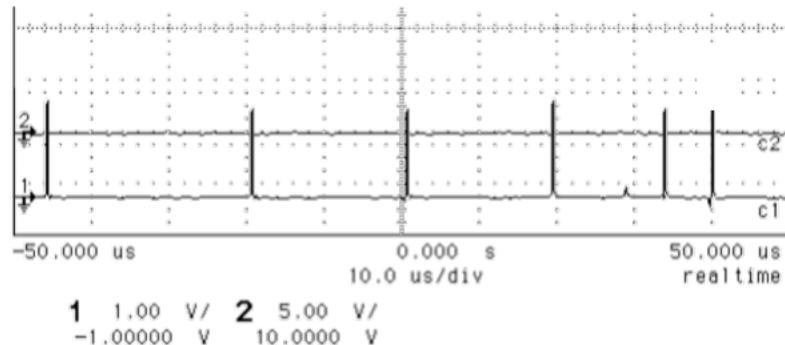
Cumulative

- State-of-the-art SPADs in dedicated technology:

$0.04 \sim 1 \text{Hz}/\mu\text{m}^2$

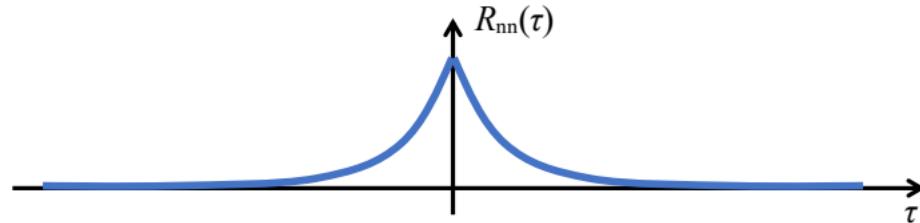
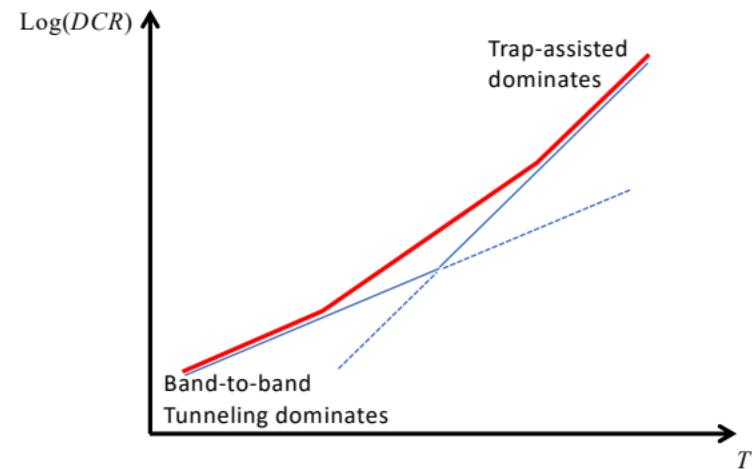
- State-of-the-art CMOS SPADs:

$0.1 \sim 10 \text{Hz}/\mu\text{m}^2$



3.3.2 SPAD Metrology – Dark Counts

- Physical mechanisms
 - Band-to-band tunneling generation
 - Trap-assisted thermal generation
 - Trap/tunneling assisted generation
- DCR statistics is Poisson, just like photon arrivals, so it is indistinguishable from the signal (and thus it cannot be removed from it)
- Consequently, the autocorrelation function $R_{nn}(\tau)$ is a double exponential:



3.3.2 SPAD Metrology – Photon Detection Probability

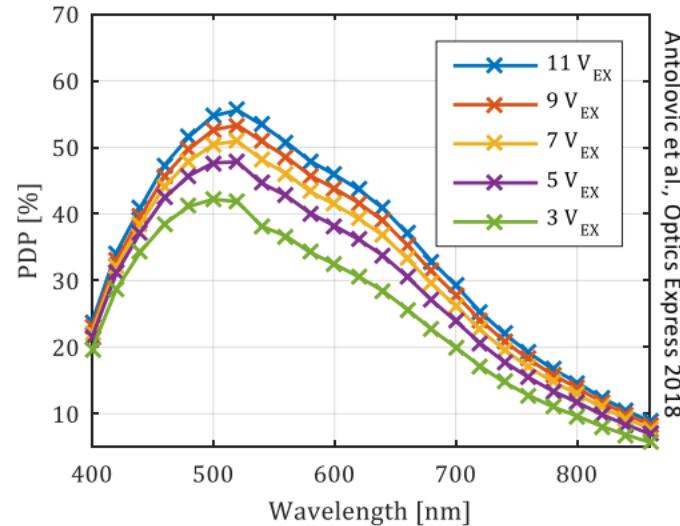
- Measure photon response in a monochromator
 - As a function of excess bias
 - As a function of wavelength and temperature
- Measure count rate subtracting DCR
- Check time-varying behavior, it should have a Poisson distribution

$$PDP = QE \cdot \Pr(\text{Avalanche} \mid E)$$

QE : Quantum Efficiency

$\Pr(\text{Avalanche} \mid E)$ = Probability an avalanche

is triggered from photon event E



$$PDE = FF \cdot PDP$$

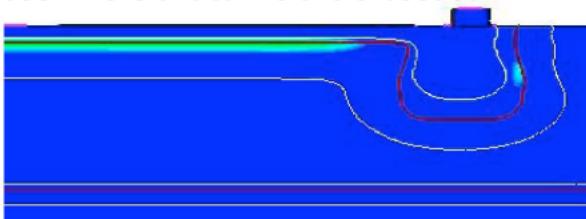
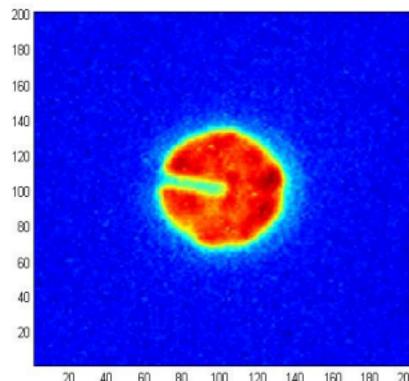
FF : fill factor =
$$\frac{\text{Active Area}}{\text{Total Sensor Area}}$$

3.3.2 SPAD Metrology – Fill Factor

- Drawn fill factor
Easy to compute
- Effective fill factor
Needs simulations to find it
Needs light emission tests

Drawn multiplication region (p+ region) in yellow

Simulation of electric field distribution;
see where critical field is exceeded



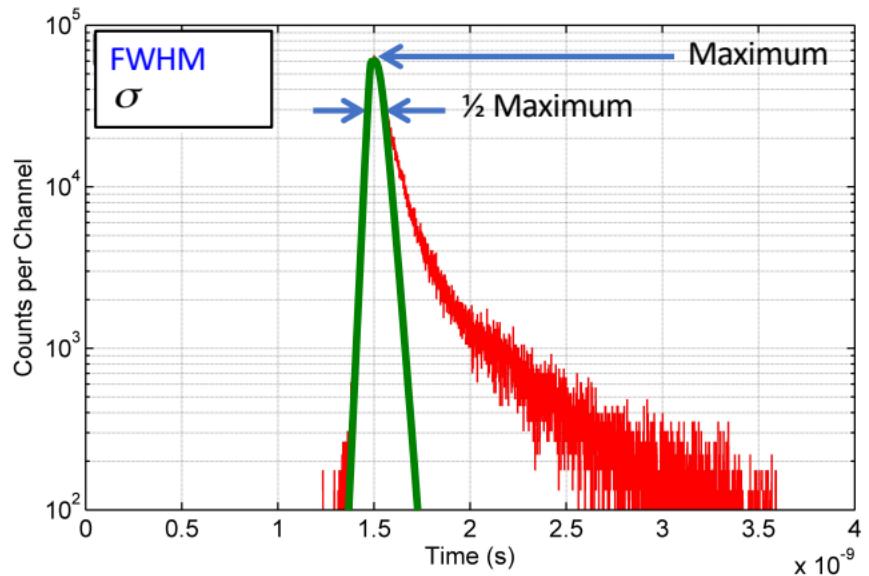
Light emission during multiple avalanches

3.3.2 SPAD Metrology – Photon Detection Efficiency (PDE)

- PDE
 - Measure count rate at given excess bias and temperature
 - Normalize to a reference detector with known PDE
- PDP
 - Compute effective sensitive area
 - $PDP = PDE/FF$
- $Pr(\text{Avalanche} | E)$
 - $Pr(\text{Avalanche} | E) = PDP/QE$
- Proportionalities
 - PDE linear (active area); PDP \sim constant (active area)
 - PDP&PDE linear (excess bias voltage)
 - PDP&PDE \sim constant (temperature)

3.3.2 SPAD Metrology – Jitter or Timing Resolution

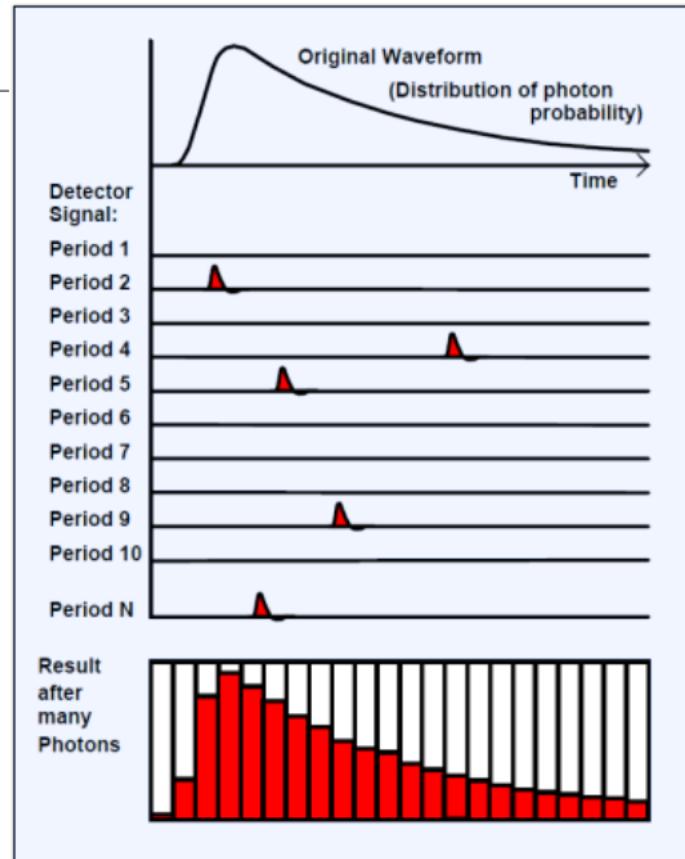
- Measure timing resolution, i.e. timing uncertainty of a response given an optical pulse excitation
Assuming a Gaussian response, it is the std dev or full-width-at-half-maximum (FWHM)
- This measurement is usually obtained by time-correlated single-photon counting (TCSPC)
- When the detector is formed by multiple SPADs we talk about single-photon time resolution (SPTR) vs. multi-photon time resolution (MPTR)
- With multiple detectors we talk about coincidence time resolution (CTR) or coincidence resolving time (CRT)



3.3.2 SPAD Metrology – TCSPC (Review)

- Goal: measure the photo response $h(t)$ of a detector
- Synchronize a pulsed laser source with a chronometer (TDC or TAC)
- Use a SPAD as a detector
- Repeat a measurement of the time response N times and record the result into a histogram

$$\hat{h}(t) \rightarrow h(t) \text{ for } N \rightarrow \infty$$

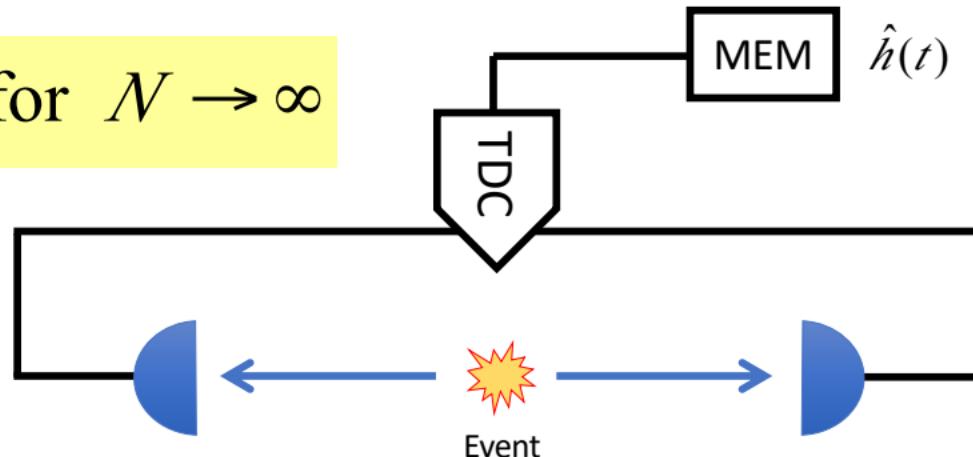


Source: Becker and Hickl

3.3.2 SPAD Metrology – CTR/CRT

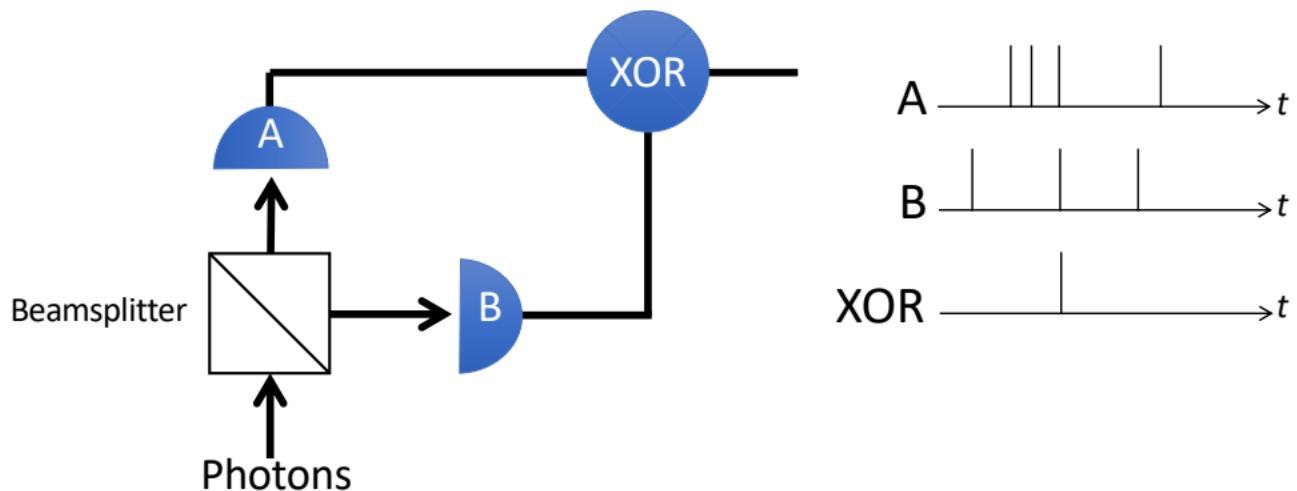
- Goal: measure coincidence of an event between multiple detectors
- Use one detector to start a TAC or TDC and the other to stop it
- Repeat a measurement of the time response N times and record the result into a histogram
- *This method does NOT require a known event occurrence!*
- Again:

$$\hat{h}(t) \rightarrow h(t) \text{ for } N \rightarrow \infty$$



3.3.2 SPAD Metrology – DCR Suppression

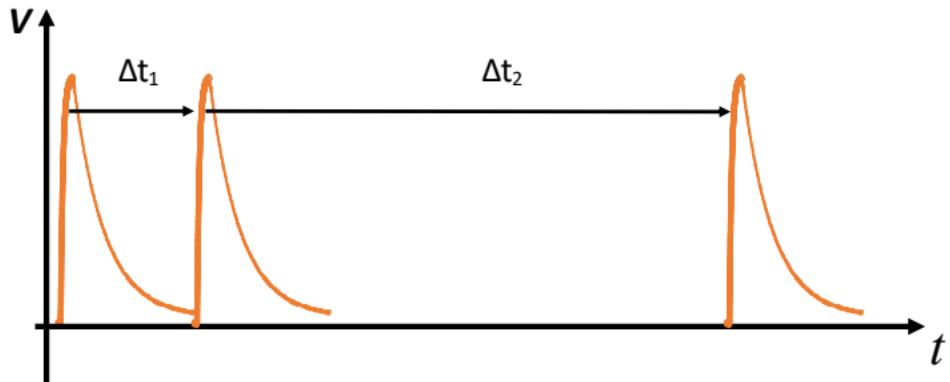
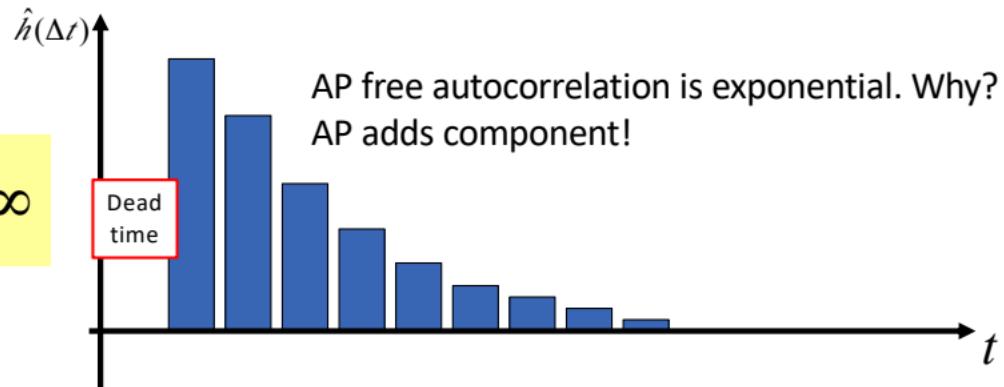
- Coincidence is a technique used routinely to reduce the effects of DCR in low photon flux measurements
- When two pulses are measured in coincidence, they are assumed to be originated by the same source.
- Otherwise 'singles' are assumed to be DCR, thus ignored



3.3.2 SPAD Metrology – Afterpulsing

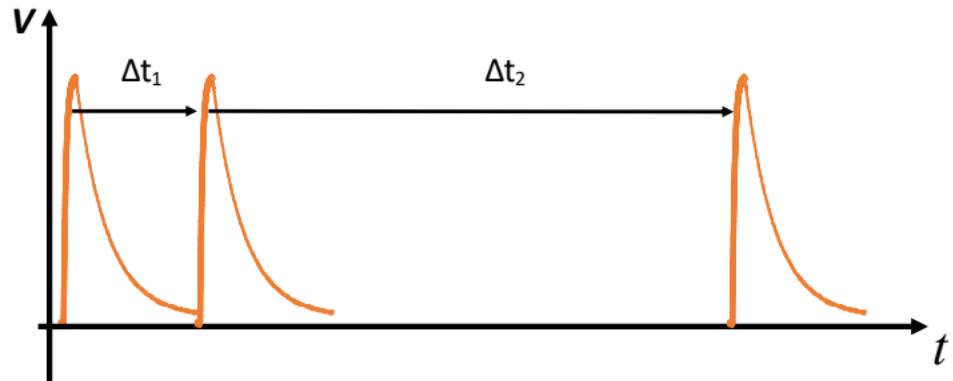
- Measure afterpulsing probability, i.e. the probability that an avalanche is triggered by an event that is related to a previous event
- Free-running TCSPC
- Compute histogram of inter-arrival times
- Again:

$$\hat{h}(\Delta t) \rightarrow h(\Delta t) \text{ for } N \rightarrow \infty$$

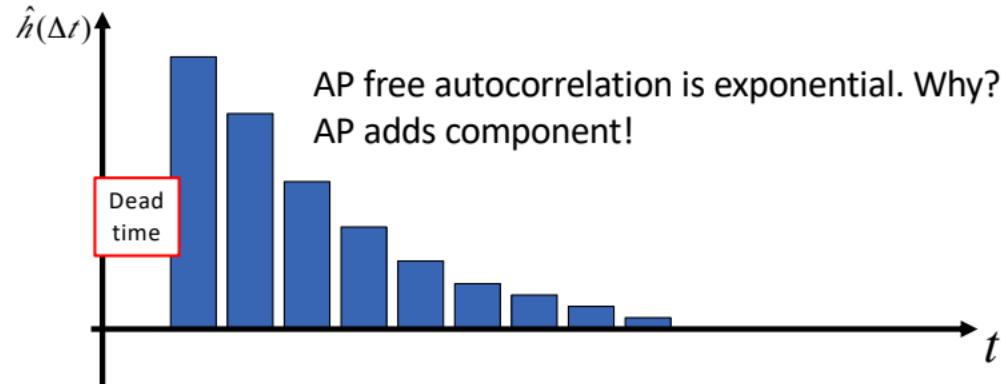


3.3.2 SPAD Metrology – Afterpulsing

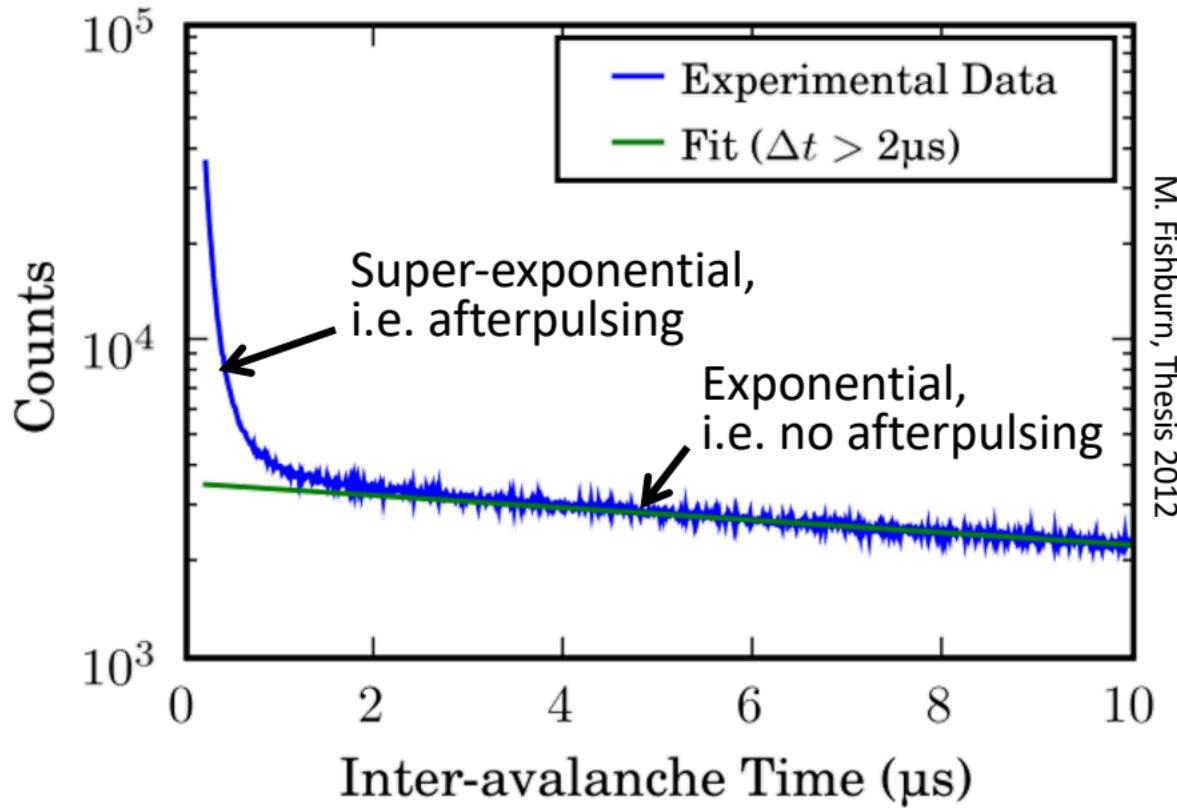
- Four methods, of which these are the most used:
 1. Sample counts at fixed times in the presence of light and compute the autocorrelation function
 2. Measure inter-arrival times in the presence of light and compute autocorrelation function



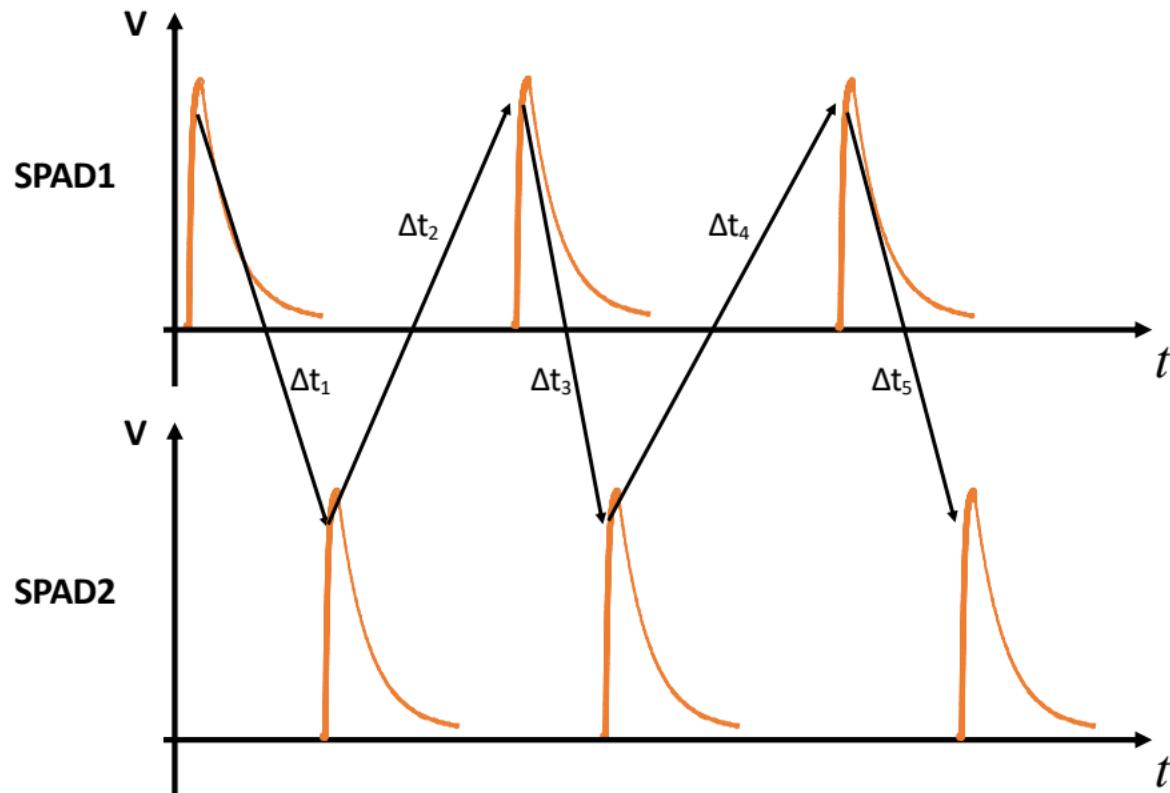
- Proportionalities:
 - Linear (charge involved in an avalanche)
 - Exponential (inter-arrival time & dead time)
 - Complex dependency (excess bias voltage)
 - Complex dependency (temperature)



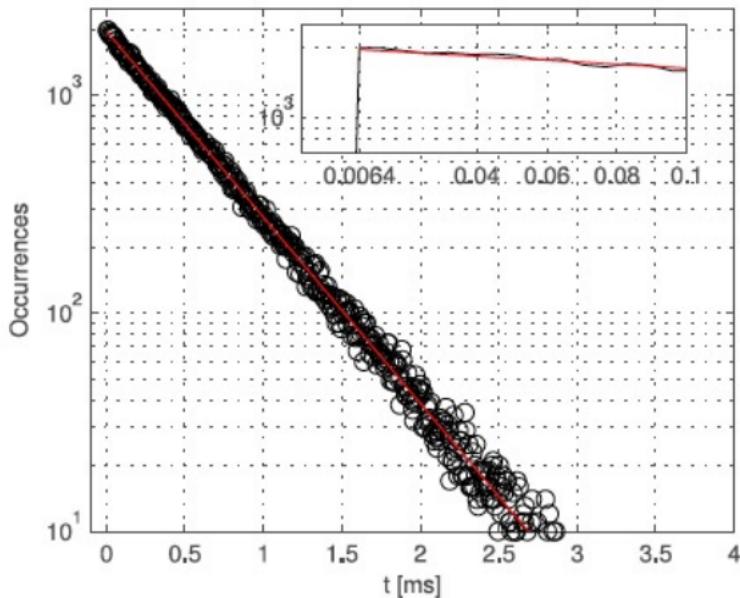
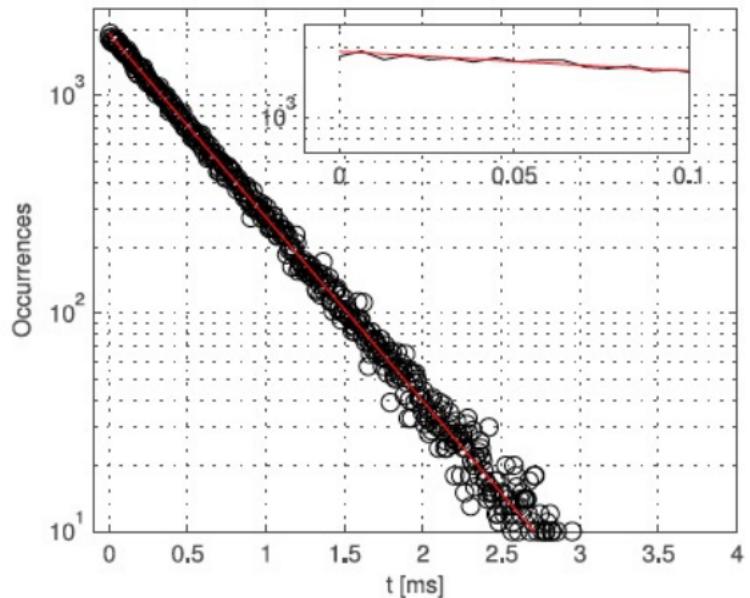
3.3.2 SPAD Metrology – Afterpulsing Example



3.3.2 SPAD Metrology – Crosstalk: Cross-inter-arrivals

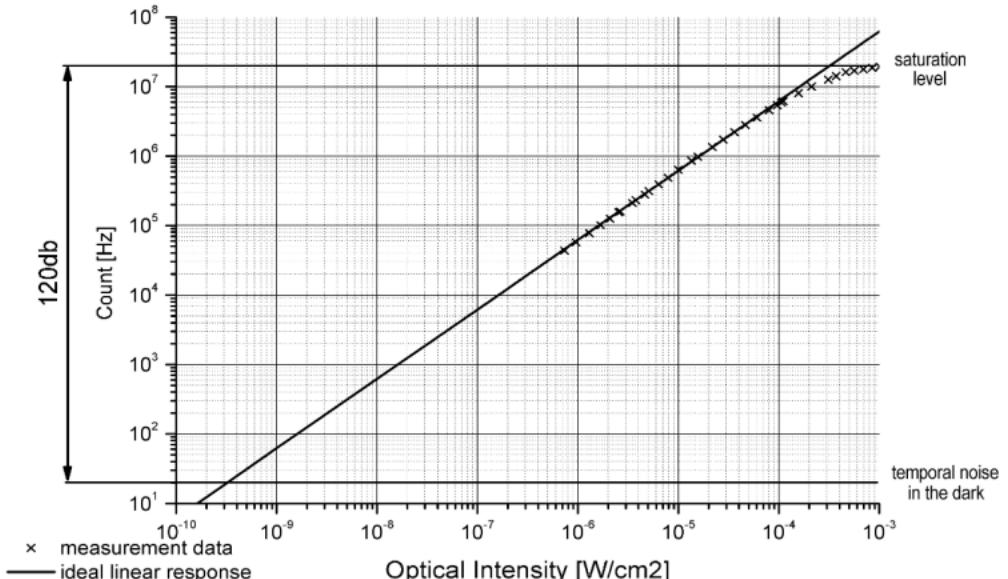


3.3.2 SPAD Metrology – Crosstalk: Cross-inter-arrivals

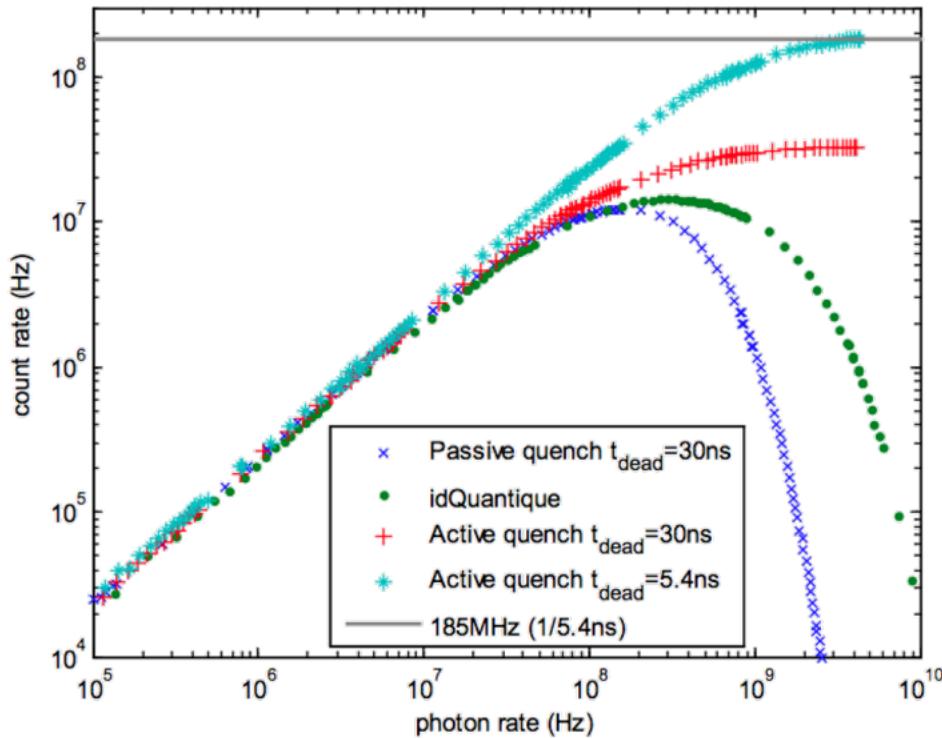


I.M. Antolovic, S. Burri, R. Hoebe, Y. Maruyama, C. Bruschini, E. Charbon, MDPI Sensors, **16**, 1005, 2016

3.3.2 SPAD Metrology – Dynamic Range



3.3.2 SPAD Metrology – Dynamic Range: Active vs. Passive Recharge



$$f_{\text{MAX}} \cong \frac{1}{t_{\text{DEAD}}} \quad \text{for active quenching}$$
$$f_{\text{MAX}} \cong \frac{1/e}{t_{\text{DEAD}}} \quad \text{for passive quenching}$$